Will European trade undermine the EU’s move to clean biofuels?

The urgent need for EU trade policy coherence and the transition towards cleaner biofuels

June 2017
In-house analysis by Transport & Environment
Published by Transport & Environment

For more information, contact:

For trade matters:
Kristina Wittkopp
Legal Analyst, Better Trade and Regulation
Transport & Environment
kristina.wittkopp@transportenvironment.org
Tel: +32 (0)488 927946

For energy matters:
Laura Buffet
Manager, Clean Fuels
Transport & Environment
laura.buffet@transportenvironment.org
Tel: +32 (0)2 851 02 12
Executive summary

The EU is negotiating trade deals with Mercosur (Argentina, Brazil, Paraguay and Uruguay) Indonesia, and soon Malaysia. These trade deals represent a risk for the EU’s sustainable transport plans. All mentioned countries are producers and exporters of crop-based biofuels, especially from palm and soybean oil that have higher overall emissions than fossil diesel. All ongoing negotiations include chapters on Energy and Raw Materials (ERM). One of the objectives of the planned trade agreements is to facilitate trade in these areas, which will reduce the cost of raw materials and biofuels originating from the abovementioned countries. At the same time the EU is committed to decarbonising the transport sector and to phasing out crop-based biofuels. In 2016, the Commission made a proposal to cap so-called 1st generation biofuels at 3.8% by 2030 as part of its Renewable Energy Directive (RED). Instead the EU wants to increase the supply of clean electricity as well as advanced biofuels as transport energy.

There is a risk that these two approaches - the planned trade agreements and the RED I and II initiatives - will be at odds with each other. First of all, even though the Commission is signalling its move away from crop-based biofuels, there will still remain demand for those biofuels (within the proposed crop cap of 3.8%). Once the trade deals are concluded, this demand will increasingly be met by cheap, unsustainable crop-based biofuels from South America and South East Asia. Removal of trade barriers would thus likely lead to increasing shares of unsustainable crop- based biofuels from these regions. This could lead to additional deforestation, biodiversity loss and higher overall greenhouse gas (GHG) emissions from biofuels. The EU monitors but does not account for the indirect land use change effects (ILUC) of biofuels. The ILUC impacts of palm and soybean oil are a major contributor to their negative environmental impacts. Secondly, the EU’s new trade partners will put pressure on the European Commission to adopt more lenient internal policies to facilitate trade. There is an important precedent where Canadian pressure, as part of the CETA deal, helped scupper the EU’s Fuel Quality Directive, which would have discouraged the use of Canada’s high GHG emissions tar sands. Argentina has already raised the compatibility of the EU’s biofuels sustainability criteria at the WTO. Additionally, Indonesia and Malaysia announced that they would send a delegation to “kill” the initiativе, shortly after the European Parliament adopted a report calling for a phase-out of vegetable oils causing deforestation as a component for biofuels.

While the main driver for the presence of unsustainable crop-based biofuels in the EU is the RED, our report recommends four trade policy approaches to ensure that trade does not contribute to the use of unsustainable crop-based biofuels:

1. A ‘public interest screen’ that includes climate and environmentally friendly criteria should be employed during all FTA negotiations to determine which goods should be subject to potential tariff reductions. Goods with significant negative climate and environmental impacts should be excluded from tariff reductions.
2. A modern ERM chapter in a free trade agreement (FTA) ensuring the post-Paris mass decarbonisation in the energy and transport sector.
3. The incorporation of environmental criteria such as GHG implications, land use, water and air quality and environmental dumping during investigations for the imposition of anti-dumping duties.
4. A reform of the Harmonised System (HS) Nomenclature at the World Customs Organisation (WCO) that would make a clear distinction between sustainable advanced biofuels (e.g. from waste and residues and unsustainable biofuels from food crops, as well as reporting a breakdown of the raw material used in blended biofuels.

Without a meaningful, effective and coherent policy alignment, the EU risks losing its credibility on effectively tackling climate change in a sustainable manner and delivering ‘gold standard’ trade agreements.
Table of Contents

1. Introduction
 2. Biofuels 101
 2.1. ILUC in a nutshell
3. Mapping trends
 3.1 Recommendation
4. Tackling tariffs
 4.1. Recommendation
5. Energy and Raw Materials
 5.1. Recommendation
6. Harnessing trade remedies
 6.1. Recommendation
7. HS Revamp
 7.1. Recommendation
8. Conclusions
1. Introduction

In late 2016, EU Commissioner for Agriculture Phil Hogan said on a trip to Indonesia that ‘there is great potential to already increase trade (in agricultural products such as palm oil) […] without waiting for the conclusion of this agreement’. During the second negotiating round for the EU-Indonesia free trade agreement (FTA), Indonesia signalled that it considers palm oil as a source of renewable energy for the purpose of a possible Energy and Raw Materials (ERM) Chapter. At the same time, the EU is also negotiating with Mercosur (Argentina, Brazil, Paraguay and Uruguay). Argentina and Brazil produce biofuels from soybeans and sugar cane in large quantities (see Figure 1). Trade talks with Malaysia, one of the biggest palm oil producers, will restart in 2017. Crop-based biofuels (or biodiesels) used to fuel European transport have higher GHG emissions than fossil diesel. FTAs logically mean increased cheaper trade in raw materials, including biofuels. This begs the following questions:

Will future trade agreements lead to inconsistent European policy development internally and externally? Could EU trade policy undermine signals to phase out food-based biofuels, as set out in the new draft RED? Could FTAs lead to an increase of biofuels, notably palm oil-based, on the European market? And what can be done to counter these negative effects?

Sustainable development has become a guiding principle in the EU’s internal and external policy. The Treaty on the Functioning of the European Union (TFEU) even explicitly states that environmental protection requirements are to be integrated into EU policy, including EU trade policy. The Common Commercial Policy needs to be conducted in the context of the principles and objectives of EU external action, which require the EU to improve the environment and to promote sustainable management of global natural resources. Internally, the EU shall ‘work for the sustainable development of Europe’. In its relations with the wider world, the EU shall contribute to the sustainable development of the earth.

However, European action in certain areas, although started with good intentions, at times ends up backfiring. Under the terms of the EU’s RED, the EU Member States must source 10% of transport energy from renewable sources by 2020. The RED mainly led to the use of the cheapest and easiest-to-use “renewable” fuels, i.e. crop-based biofuels. The revision of the RED (or RED II) is an effort to mitigate the damage, and help deliver transport decarbonisation.
There is a risk that these two approaches - the planned trade agreements and the RED I and II initiatives - will be at odds with each other. First of all, even though the Commission is signalling its move away from crop-based biofuels, there will still remain demand for those biofuels (within the proposed crop cap of 3.8%). Once the trade deals are concluded, this demand will increasingly be met by cheap, unsustainable crop-based biofuels from South America and South East Asia. Removal of trade barriers would thus likely lead to increasing shares of unsustainable crop-based biofuels from these regions. This could lead to additional deforestation, biodiversity loss and higher overall greenhouse gas (GHG) emissions from biofuels. The EU monitors but does not account for the indirect land use change effects (ILUC) of biofuels. The ILUC impacts of palm and soybean oil are a major contributor to their negative environmental impacts. Secondly, the EU’s new trade partners will put pressure on the European Commission to adopt more lenient internal policies to facilitate trade. There is an important precedent where Canadian pressure, as part of the CETA deal, helped scupper the EU’s Fuel Quality Directive, which would have discouraged the use of Canada’s high GHG emissions tar sands.9 Argentina has already raised the compatibility of the EU’s biofuels sustainability criteria at the WTO.10 Additionally, Indonesia and Malaysia announced that they would send a delegation to “kill” the initiative11, shortly after the European Parliament adopted a report calling for a phase-out of vegetable oils causing deforestation as a component for biofuels.

This position paper proposes solutions to reconcile the EU’s internal and trade policies on crop-based biofuels. There is a clear need for coherent trade policy that supports the rules of the EU internal market (e.g. the RED, with the goal of reducing GHG emissions in line with the Paris Agreement) rather than closing the market.

2. Biofuels 101

In 2009, the Renewable Energy Directive (RED) (2009/28)12 sought to incentivise the use of renewable fuels in the transport sector by setting the mandatory target that 10% of the total energy use in transport had to come from renewable sources by 2020. What started as a tool to stimulate a new generation of biofuels and renewable electricity actually led to the use of the cheapest and easiest-to-use ‘renewable’ fuels, i.e. crop-based biofuels. From the start, NGOs raised concerns about the indirect effects linked to the high demand for crop-based biofuels – or Indirect Land Use Change (ILUC).13

The ‘ILUC reform’ (concluded in 2015) aimed to strengthen the sustainability safeguards to limit the negative environmental and climate impacts of crop-based biofuels. Eventually, the EU agreed a 7% cap regarding the level of crop-based biofuels that Member States could include to count towards the 10% target of renewables in transport in 2020.

The so-called Effort Sharing Decision14 (ESD), which is still in co-decision, considers that all bioenergy used in the sectors covered (which includes surface transport) is carbon-neutral, i.e. its GHG emissions are treated as equal to zero until 2020. It is most likely that the next phase up to 2030 will continue this trend. This means that the climate impacts of biofuels (of whichever kind it is, including crop-based biofuels) are not correctly captured. Also, it then creates a ‘necessity’ for Member States to use biofuels, in order to meet their 2020 and 2030 climate targets. This therefore undermines any efforts to cap crop-based biofuels.
2.1. **ILUC in a nutshell**

The increased demand for crop-based biofuels leads to agricultural lands being used to grow crops for energy purposes, displacing the production of crops for food. Further land is needed to grow crops to meet both food, energy and transport demands. In many cases, the displacement occurs in high environmental value and high-carbon stock areas, such as the tropical rainforest in Indonesia or Malaysia. When these areas are converted into agricultural land, the CO$_2$ sequestered is liberated into the atmosphere, significantly increasing the life-cycle emissions associated with biofuels. The overall land use change emission projected to be caused by the RED biofuel demand is 952 MtCO$_2$eq, which roughly equates to the annual transport emissions of the EUxvi. In addition to the climate impact, an increased demand for land to grow crops for biofuels also brings about environmental, biodiversity and social consequences.

While the ILUC issue is associated with all crop-based biofuels, the biggest problem lies with vegetable oil-based biodiesel, notably palm oil, which has the biggest climate impact, as shown in Figure 2. Palm oil is cheap, which explains why palm oil is used for biofuels. The EU has seen a 6-fold increase in the share of palm oil imports going to biodiesel from 8% in 2010 to 46% in 2015. xvii

![Figure 2. Direct emissions plus land emissions](image-url)
3. Mapping trends

Although RED II is still being discussed in co-decision, T&E’s ideal policy scenarios can be captured looking at the European Commission proposals and the different tariff phase-outs for the Indonesia FTA. We modelled three possible scenarios (immediate, 5-year and 10-year tariff phase-out) and modelled them against the European Commission’s proposal for a 3.8% cap in the RED II. The indicative timelinesviii are outlined in Figure 3 and show that Scenario 3 is the best one to ensure that trade policy does not undermine the EU’s internal efforts.

![RED II and the Indonesia FTA](image)

Figure 3. RED II and Indonesia FTA

3.1 Recommendation

Scenario 1 is the least favourable, that is, if biodiesel tariffs fall immediately on entry into force/provisional application. This means that even cheaper biodiesels could enter the EU market at a time where there could still be some policy drivers supporting their use at EU level. With a 5-year tariff phase-out, we would still have a gap between the tariff reduction and the 2030 target. This is undesirable as it makes the import of biofuels during this period still attractive. Scenario 3 is the most preferable, with the longest tariff phase-out of 10 years, and would mean that the slow phase-out of tariffs would run parallel to decreasing the RED share of food-based biofuels. Ideally, tariffs would only fall at the same time, as crop-based biofuels are phased out. Only Scenario 3 would both support EU internal policy and ensure policy alignment.
4. Tackling tariffs

Traditionally, FTAs aim to reduce or eliminate tariffs. The objective is to reduce costs for exporters, increasing competitiveness on the new markets, and to lower costs for consumers. The positives effects of tariff reductions are generally well known; however, the negative results are less discussed.

Under a zero-tariff regime for biofuels, the EU is likely to import more and cheaper biofuels (be they from sustainable or unsustainable sources), if a phase-out of the policy support does not take place quickly, whether it is at national or EU level. As Figure 4 shows, the impact of the current EU import tariff rates on certain goods entering the European market will be higher for ethanol imports, as the tariff rate is higher than for biodiesel.

![Figure 4. EU import tariffs](image)

The climate impact of biofuels changes significantly when including indirect emissions, and vegetable oil-based biodiesel is on average worse for the climate than fossil diesel. Given that the EU’s future free trade partners Argentina and Indonesia mainly produce these crop-based biofuels, appropriate action to disincentivise the trade of unsustainable biofuels is urgently needed.

4.1. Recommendation

A ‘public interest screen’ that includes climate and environmentally friendly criteria should be employed during all FTA negotiations, to determine which goods should be subject to potential tariff reductions. Goods whose production is found to cause significant negative climate, environmental and social impacts in a negotiating country (e.g. biodiesel from palm oil in Indonesia) should be excluded from the list of tariff reductions that could be granted to that country.

Where that exclusion is not feasible, consideration must be given to different phase-out periods based on the environmental and climate performance of a biofuel. Biofuels with very high GHG emissions ought to have their tariffs phase out over the longest period possible, e.g. 10 years. Climate-friendly alternatives such as sustainable advanced biofuels should profit from an immediate tariff phase-out. This benefit does not mean that the EU should import all sustainable advanced feedstocks available. Instead, the focus should remain on what the EU can sustainably produce in its territory. If tariffs are phased out straight
away, this must be coupled with a bilateral environmental safeguard clause allowing the suspension of already reduced tariffs for vegetable oils and biofuels with high GHG emissions. The EU-Korea FTAxxii could act as a model, as the safeguard clause allowed the adjustment of tariffs if car imports caused a serious injury to European car manufacturers. The European Commission, the European Parliament and stakeholders would be able to request investigations leading to the activation of such a clause. Special monitoring of import flows would be an added benefit.

5. Energy and Raw Materials

Securing access to energy and raw materials in third countries to ensure the EU’s competitiveness has been a long-standing policy.xxiii This aspect has also been incorporated in the ‘Trade for All Strategy’ in 2015.xxiv In line with this, the European Commission will ‘propose an energy and raw materials chapter in each trade agreement’xxv, the underlying reason being security of supply.

Negotiations for an FTA between the EU and the US, named the Transatlantic Trade and Investment Partnership (TTIP), marked the start of the introduction of ERM chapters in the negotiations. Now ERM chapters have been proposed for new FTAs, such as with Mercosurxxvi and Indonesia.xxvii

To date, these ERM chapters have focused on the ‘old style’ trade liberalisation, since the only energies that are easily traded and transported are carbon-intensive, such as coal, oil, gas, biomass and biofuels.xxviii In a post-Paris world, which requires mass global decarbonisation of the energy and transport sector, trade needs to not only help to deliver this decarbonisation, but also ensure that a truly sustainable biofuels market is guaranteed.

5.1. Recommendation

Firstly, life-cycle emission assessments (LCA), including indirect-land use change (ILUC), must form part of a progressive energy and raw materials chapter. Secondly, reference to the EU’s sustainability criteria must be made. If a biofuel does not meet these criteria, its import must not be allowed.xxix Thirdly, a commitment to tackle climate change must be incorporated into these chapters, supported by substantive requirements. Fourthly, a clause stating that trade in ERM will in no way undermine the EU’s internal renewable energy policies must be included. Finally, crop-based biofuels should not be recognised as renewable energy for the purpose of the ERM chapter. They have been oversold as climate friendly, yet – in most cases – do not achieve any major GHG savings. It is not the place for a trade agreement to determine which type of good is renewable. There is an internal public policy debate to be held for that. Only if these recommendations are taken into account, would the EMR chapter be fit for purpose.

6. Harnessing trade remedies

Although separate from FTAs themselves, the issue of anti-dumping duties on biodiesel is important. The EU imposed duties on Argentinian and Indonesian biodiesel in 2013.xxx However, the measures against Argentina have been found to be WTO incompatible.xxxi As such, the EU must bring the duties in line by 10 August 2017. The case lodged by Indonesia is still pending.xxxii Furthermore, the General Court also annulled the anti-dumping duties against Argentina and Indonesia.xxxiii Appeals before the European Court
of Justice (ECJ) are pending. Should a review lead to the conclusion that the duties are not merited, they could fall as of August 2017. In any case, the anti-dumping duties run out on 27 November 2018.

Any anti-dumping measure renewal, especially in the light of future FTAs, is not a given. Pressure by negotiating partners could easily lead to a decision to remove irritants such as trade defense measures. It has been observed via the Fuel Quality Directive that heavy Canadian lobbying during the CETA negotiations watered down the final legislation significantly. Additionally, in February 2017, Argentina’s President Macri visited Spain with 200 businessmen on a biodiesel mission. The objective was to get support for re-establishing Argentina’s biodiesel export after the imposition of the 2013 anti-dumping duties in 2013. This all shows that the duties are indeed a burning topic for the negotiations.

The current anti-dumping duties (between 8.8% and 25.7%) are a sufficient deterrent for the import of unsustainable crop-based biodiesel. As shown in Figure 5, imports of biodiesel from Argentina and Indonesia have significantly decreased. The import of biodiesel from Malaysia, where no anti-dumping duties apply, has by contrast remained stable.

Should the anti-dumping duties fall, EU imports would most likely increase. In the case of Argentina, Spain has recently eliminated a block on the imports of Argentine biodiesel. It is thus likely to return to being the number one importer.

6.1. Recommendation

Using anti-dumping to further sustainable development and climate mitigating measures might initially not be the obvious solution. However, it offers opportunities to tackle the problem from a different angle decoupled from FTAs. There are essentially two alternatives: a WTO reform and regional action.

The long-term option requires a change of thinking at WTO level, which would avoid fragmentation. A reform of the WTO Anti-Dumping Agreement is therefore necessary. For example, a climate change criterion test should be applied for anti-dumping duties on unsustainable goods with high GHG emissions, should they be challenged. The lesser duty rule, i.e. duties at a level lower than the margin of dumping, should not be applied either with regard to unsustainable products, as the deterrent effect would not be high enough. Given the stall of the Doha Round, a quick success is unlikely. Regional action must, therefore, take place the meantime, in the hope that it can propel changes at the multilateral level.
Concretely, the EU needs to incorporate environmental criteria such as GHG implications, land use, water and air quality and environmental dumping during its investigations for the imposition of anti-dumping duties. To this end, a broader group of stakeholders must be invited to voice their opinion and to give valuable expert input on environmental concerns. Higher duties could then be imposed on goods if the exporting country does not take action to protect environmental standards or mitigate climate change, as demanded under Multilateral Environmental Agreements (MEA) such as the Paris Agreement. If a trade remedies chapter is foreseen for an FTA, this approach must be clearly reiterated there.

The European Parliament has called for similar considerations in its 2014 position on the trade defence reform (2013/0103(COD)). Recently, the inclusion of environmental requirements for the purpose of the damage calculation method was adopted in a broad compromise by the European Parliament’s Committee on International Trade (INTA). The file is still under negotiation in co-decision.

This action could have a spillover effect encouraging other countries to take environmental concerns into account when imposing anti-dumping duties. In the specific case of crop-based biofuels, trade would ultimately decrease due to resulting higher prices. At the same time, more sustainable advanced biofuels would benefit as, coupled with lower tariffs or a faster phase-out, they would become more attractive.

7. HS Revamp

The Harmonised Commodity Description and Coding System, also known as the Harmonised System (HS) of tariff nomenclature is an internationally standardised system to classify traded products. It is used to set tariffs and draw up trade statistics.

The current HS codes do not reflect the complexity, transparency and sustainability criteria required for crop-based biofuels or biodiesel blends. There is no specific classification for biofuels. Bioethanol is treated in the agricultural tariffs chapter, whereas biodiesel from vegetable oils falls under industrial tariffs. Having two tariff categories for biofuels makes a comparison difficult.

The picture becomes even more complicated when wishing to assess the raw materials used to produce biofuel. The classification ‘biodiesel’ does not allow for an assessment of which raw material is used. For bioethanol it is not even clear if it is used for fuel, industry or beverages. Under the Renewable Energy Directive and Fuel Quality Directive, EU Member States receive information about the type of biofuels used to meet the requirements of the directives. However, not all Member States make this information publicly available. Also, only cosmetics and food (containing, for example, palm oil) need to be labelled for consumers, but this does not apply to biofuels. It is key that we know exactly what is in the biofuel coming into the EU without relying on Member States to provide such information. Otherwise, a clear assessment of its climate and sustainability profile is not possible.

Data from 2015 shows that most biodiesel was imported into the EU under HS code 3826 00 10, and was thus denoted as ‘pure’, containing at least 96.5% biodiesel. However, this HS code does not provide any information about the raw material used. Has it been derived from palm oil, soybean oil or something else? Therefore, it can be concluded that the HS codes are currently not suited to assess whether or not a biofuel is sustainable.
A recent overhaul of the HS Nomenclature, which entered into force on 1 January 2017, does not address
the issue of the HS codes, although environmental and social concerns have played a major role in
amending the nomenclature. Concretely, the new HS system allows for a better monitoring and control of
trade in goods having an environmental impact.lix

7.1. **Recommendation**

Raw materials such as palm oil and crop-based biofuels have a significant negative impact on the
environment and the climate.1 HS codes must make a clear distinction between sustainable advanced
biofuels (e.g. from waste and residues) and crop-based biofuels, as well as a breakdown of the raw
materials used in blended biofuels. This division would allow countries to impose different tariffs on
imports based on environmental characteristics, with potentially higher tariffs for high GHG emission
biodiesels from vegetable oils, and lower tariffs for sustainable advanced raw materials and biofuels.

This would ultimately incentivise the use and trade of more sustainable biomass. We therefore ask the
European Commission to initiate a reform of the Harmonised System (HS) Nomenclature at the World
Customs Organisation (WCO) that would allow a distinction between different types of fuels, based on
climate and environmental safeguards. This must then be applied to all products, especially where
vegetable oil is the main component, e.g. palm oil diesel. The European Parliament has recently adopted
(with a large majority) a report on palm oil and the deforestation of rainforests that goes in that direction
(2016/2222(INI)).li

8. **Conclusions**

The current trade policy is alarming, considering for the necessary decarbonisation of the transport
sector. While the EU is gradually trying to move away from the crop-based biofuels, the current trend in
trade policy raises concerns as to how much it is aligned with these internal policy signals. Although it is
difficult to predict the market developments, it is likely that the import of climate damaging biofuels
will continue, if policy support at EU level is not phased out immediately. Trade negotiations bear a risk of
undermining the RED developments.

The European Commission sends mixed signals when it signs an FTA with a country that is producing
unsustainable biofuels, whilst it is also trying to phase out such a commodity internally in the EU. This
report is not a call to stop negotiations of such FTAs, but rather a demand for trade policy to reinforce the
environmental and climate safeguards in the future RED II, as it is the first and foremost driver of the use of
biofuels. Trade and internal biofuels policy are not incompatible; rather, trade policy should support the
transition away from crop-based biofuels and the move towards more sustainable advanced alternatives.
To achieve this, we suggest four means:

1. A ‘public interest screen’ that includes climate and environmentally friendly criteria should be
 employed during all FTA negotiations, to determine which goods should be subject to potential
tariff reductions. Goods with significant negative climate and environmental impacts should be
 excluded from tariff reductions.
2. A modern ERM chapter, in a free trade agreement (FTA) ensuring the post-Paris mass decarbonisation in the energy and transport sector.

3. The incorporation of environmental criteria such as GHG implications, land use, water and air quality and environmental dumping during investigations for the imposition of anti-dumping duties.

4. A reform of the Harmonised System (HS) Nomenclature at the World Customs Organisation (WCO) that would make a clear distinction between sustainable advanced biofuels (e.g. from waste and residues) and unsustainable biofuels from food crops, as well as reporting a full break-down of the raw material used in blended biofuels.

A lack of policy coherence does not only run counter to well-defined obligations in the Treaties, but risks proliferating the continued use of unsustainable biofuels in transport. If the EU wishes to remain credible on effectively tackling climate change in a sustainable manner, it has to step up its game and ensure that the RED is not undermined by its trade outreach.

Endnotes

v Article 11 Treaty on the Functioning of the European Union (TFEU) states: ‘Environmental protection requirements must be integrated into the definition and implementation of the Union’s policies and activities, in particular with a view to promoting sustainable development.’

vi Article 207 (1) TFEU

vii Article 21 (2) (d) TEU. This has also recently been confirmed in the recent European Court of Justice Opinion 2/15 on the EU-Singapore Free Trade Agreement where the Court stated that sustainable development forms an integral part of the Common Commercial Policy.

viii Art 3 (3) Treaty of the European Union (TEU)

ix Art 3 (5) TEU

E.g. HS codes 2207 10 and 220720

E.g. HS codes 38249092 and 3826 00 10

This would be 527 million liters. 1 million liters and 10 million liters respectively were imported as blends under HS code 3826.00.90 (containing between 30 and 27 percent of biodiesel) and 2710.20.11 (containing at most 30 percent biodiesel). The latter is presumed to be B5 (95% diesel, 5% biodiesel). The majority of biodiesel imports occur through the Netherlands, Spain, and Bulgaria. Data from GAIN Report NL6021 EU-28, available at https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_The%20Hague_EU-28_6-29-2016.pdf (retrieved 1.6.2017)

See above.