How to kick-start the deployment of zero-emission vessels

Online presentation at “How to decarbonise shipping by 2050?”
EU Parliament, Brussel
July 2021, Roy Campe, CTO CMB.TECH
Presentation Topics

1. Introduction CMB Group & CMB.TECH
2. Zero carbon pathway from CMB
3. Why ports can play a crucial role
4. Dual fuel combustion technology
5. Key takeaways
6. Q&A
The division’s activities can be summarized in 4 focus areas:

ENGINEERING
A fast growing highly skilled engineering team with >15y of experience with hydrogen systems

INDUSTRY
Design and retrofit of industrial applications to run on the clean fuel of hydrogen

MARINE
Design, building and operation of a future proof fleet powered by hydrogen and ammonia

H2 INFRA
Technology and infrastructure to produce and distribute the clean fuels of the future
CMB has paved the pathway towards zero emission shipping with concrete and tangible projects.

- **Hydroville** (16pax ferry)
- **Hydrocat** (CTV)
- **Hydrobingo** (80pax ferry)
- **Maritime Hydrogen Refuelling Station**
- **Hydroville** (16pax ferry)
- **HydroPhoenix** (50TBP)
- **Hydrocat** (3800dwt)
- **Chemical Tanker** (25k DWT)
- **Dry Bulk Carrier** (205k DWT)
- **Container Vessel** (6000 TEU)

CMB.TECH is also working on large scale production of green H₂ and NH₃ in Namibia.

In operation
Construction phase
Design phase
Ports will play a key role in kickstarting zero emission ships

• Shipping is standardized, meaning what works for Antwerp will work in Rotterdam, Hamburg, Marseille, etc.
• By equipping 200 ports worldwide with H₂ technology, an unparalleled emission’s saving can be established
• Europe can be key player developing the H₂ technology:
 ➢ **Port equipment**: difficult to electrify (when vessel is in port, cargo operations do not allow long battery recharging)
 ➢ **Shore power solutions**: CMB.TECH developed in the JV BeHydro hydrogen powered cold ironing genets and the concept of a power barge, to provide clean power to ships.
 ➢ **Power barge**: can also be used to refuel barges or other ships: “The station comes to the vessel, instead of the vessel sails towards the refuelling station.”
 ➢ **Port vessels**: most port vessels can operate on compressed H₂ without the need for disruptive technology
Combustion engines will have a major role for heavy industries such as shipping

- There is no golden bullet that can replace diesel, but batteries, hydrogen and ammonia will have a major role as future fuels:
 - Batteries for low power and short-range applications with high idling times
 - H₂ for local heavy-duty equipment where quick refuelling is required
 - NH₃, where H₂ storage does not offer a viable solution
- Fuel Cells (H₂ & NH₃)
 - Not proven in harsh conditions
 - Expensive & limited lifetime (degradation)
- Combustion engine (H₂ & NH₃)
 - Reliable
 - Affordable
 - Known technology
 - Dual fuel capability
Ships do not have that many choices to offer zero emission transport

- **Batteries**: ships require a large energy buffer, resulting in a battery size which is too large, too heavy and too expensive. There are no means to charge this battery during port call;

- **Photo-Voltaic panels**: the ship’s surface is not big enough to even provide 10% of the required power;

- **Wind energy**: more interesting for slow sailing vessels. Deck space is challenging, but with a projected saving of 10-30% the IMO limit of 50% GHG reduction can not be reached;

- **LNG**: due to methane slip during production, storage & combustion, net GHG effect saving is far from any IMO target. The high investments required are not justified in this respect;

- **Bio-fuel**: not enough biomass available and the supply is very seasonable. Should only be used locally.

- **Methanol**: DAC technology will remain a costly and an energy consuming technology;

- **E-fuels**: H$_2$ and NH$_3$ are carbonless fuels, each with its own challenges but offer the best perspective.

- The wide variety of technologies is withholding many ship owners, shipyards, OEMs and technology providers to invest massively into H$_2$ and NH$_3$ technology which could create the boost required to achieve the emission targets.

- Investments should accelerate and focus mainly on Hydrogen and Ammonia:
 - H$_2$ for port/local vessels (tug, pilot vessel, patrol vessel, etc), inland water vessels (barge, ferry, etc) and short sea vessels (coaster, CTV, CSOV, feeder, etc)
 - NH$_3$ for deep sea going ships.
Key takeaways from a ship owner’s perspective

- Hydrogen technology will be used by the early movers which will kickstart zero emission technology for local and short sea shipping.
- Dual fuel technology is key to allow the infrastructure to grow and mature.
- Combustion engines will play a key role in supplying an affordable and reliable platform for zero emission technology.
- Ammonia is regarded as the main clean fuel for deep sea shipping.
- Clean ammonia production is to be accelerated to allow the maritime sector to make the shift.
- Fossil fuel will remain cheaper, so regulatory incentives (reduced port fees, support for infrastructure) or a global carbon tax should provide an economic justification.
- Public tenders should enhance the selection of clean propulsion designs. Low emission cars/busses/ferries/ships should be ordered/chartered, despite the higher costs and unknowns.
- CMB.TECH believes that net-zero shipping is possible and necessary.
Q&A

Roy Campe
CTO CMB.TECH
roy.campe@cmb.be
+32 471 80 1959
www.cmb.tech