The Experience with Motorway Tolling in Germany

Werner Rothengatter

Universität Karlsruhe (TH)
The Experience with Motorway Tolling in Germany

- Infrastructure Costing as a Baseline
- Differentiation of the Charges
- Observed and Modelled Impacts on the Environment
Payment System "Toll Collect"
- Fully Allocated Infrastructure Costs of HGV
- Average Costs as Benchmarks (1999/62 EC; 2006/38 EC)
- Differentiation according to Congestion and Environmental Performance of Vehicles
Fully Allocated Costs of the Infrastructure

Basic Principles

- Assumption of a Public Enterprise to Finance and Manage the Infrastructure
- Long-term Assurance of Infrastructure Quality
- Cost = Future Expenditures for Investment, Rehabilitation and Operation (Life Cycle Approach) + Opportunity Costs (Interest on Capital)
- Fairness Principles
Fairness Principles

Fair Allocation to Vehicle Categories:
- Causality
- Responsibility for Design Elements
- Participation in Overhead Cost Recovery
- Territoriality Principle

Fair Allocation to User Generations
- No Shift of Present Costs to Future Generations
- No Shift of Future Costs to Present Generation
Costing Principles

- Bottom-up Life Cycle Analysis
- Compatibility with Long-term Investment Planning
- Compatibility with Optimal Maintenance Programmes
- Compatibility with Long-term Forecasting of Traffic
Right: Level-free intersections are treated as meta-objects, comprising of:
• Engineering works (considered in bridges database)
• Extra pavement for connecting lanes
• Additional land requirement

Left: Road pavement scheme;
• Engineering works (considered in bridges database)
• Extra pavement for connecting lanes
• Additional land requirement
Assessment of net capital value

Databases used:

- ZEB (Zustandserfassung der Bundesfernstraßen) for asset condition of pavement layers and bridges
- Road network and HGV traffic forecasts of the federal investment plan (BVWP)
- Opening dates of motorway sections and tunnels
- GIS-Maps of land use and terrain formation
Statistical Distribution of Asset life Expectancy

- Functional form of probability-distributed life expectancies: Weibull-distribution used in engineering science for quality tests.
- Influencing parameters: Mean and standard deviation of the life expectancy of new assets and age and condition at the beginning of the forecast period.
Cost Elements

- Land Value
- Earth Works
- Layers
- Tunnels, Bridges, Intersections
+ Parking/Resting Facilities
+ Investment Planning and Project Management
+ Update of Land Values to the Base 2005
Capacity costs

Earthworks
- New construction
- Major renewal

Base course
- New construction
- Major renewal

Binder course
- New construction
- Major renewal

Surface course
- Major renewal

Planning, compensation measures, police, winter maintenance ...

Runnin costs

Axle load costs

Allocation by equivalent axle loads (vkm weighted by AASHO factors)

Capacity costs

Allocation by capacity requirement (vkm weighting factors considering: length of vehicles, acceleration, clearance distance)

System Auto

Allocation by axle-kilometres within each system (Auto / HGV)

System HGV

Allocation to vehicles by unweighted vehicle Kilometres (vkm)

1:1-Costs

Allocation by axle-kilometres within each system (Auto / HGV)
Principles of Differentiation

- Congestion (not Used)
- Environmental Performance - Euro Classes (Used)
- Distance Travelled (Considered)
Development of the HDV Fleet Structure in Germany in the Reference Case 1995 - 2010

Expected development of HGV fleet composition until 2010

- Euro-0 (Pre-Euro)
- Euro-1
- Euro-2
- Euro-3
- Euro-4
- Euro-5

Share of mileage driven (all weight classes, all inter-urban road categories)
Average Infrastructure Costs, Motorways

Tentative Values

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cars and Vans</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>LGV (-> 3.5t)</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Buses</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>HGV (3.5t - 12t)</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>HGV (> 12t)</td>
<td>0.16</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.18</td>
</tr>
</tbody>
</table>
Cost Elements

- Kosten Prop.
- Kosten Kap.
- Kosten Sys.
- Kosten Gew.
- Kosten Erhebung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Differentiation of Tolls 2008

Tentative Values

<table>
<thead>
<tr>
<th>Toll Category</th>
<th>Emission /Axle Category</th>
<th>€ cts/km</th>
<th>Mill. Veh. Km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat. A</td>
<td>EEV/E6/E5/1</td>
<td>13.00</td>
<td>620</td>
</tr>
<tr>
<td></td>
<td>EEV/E6/E5/2</td>
<td>14.30</td>
<td>10,802</td>
</tr>
<tr>
<td>Cat. B</td>
<td>E4/E3/1</td>
<td>15.60</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>E4/E3/2</td>
<td>16.90</td>
<td>8,461</td>
</tr>
<tr>
<td>Cat. C</td>
<td>E3/E2/1</td>
<td>19.50</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>E3/E2/2</td>
<td>20.80</td>
<td>6,788</td>
</tr>
<tr>
<td>Cat. D</td>
<td>E2/E2/1</td>
<td>25.30</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>E2/E1/2</td>
<td>24.60</td>
<td>1,080</td>
</tr>
<tr>
<td></td>
<td>E5/E4</td>
<td>E5/E3</td>
<td>E5/E2</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Differential Charge cts/km; >32 t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handbook EC</td>
<td>1.7</td>
<td>4.8</td>
<td>6.8</td>
</tr>
<tr>
<td>Progtrans/IWW</td>
<td>2.6</td>
<td>6.5</td>
<td>12.3</td>
</tr>
</tbody>
</table>

Break-even E3 -> E5 Handbook 80,000 km

Break-even E3 -> E5 Progtr/IWW 60,000 km

Break-even E4 -> E5 Progtr/IWW 50,000 km
Observed and Modelled Impacts on the Environment

- Observed: Change of Fleet Structure on Motorways Significantly Faster than Average
- Observed: Underlying Cost Structure of the Road Haulage Industry
- Observed: Break-even Points for the Change to Better Technology
Observed and Modelled Impacts on the Environment

- Modelled: Change of Vehicle Loading
- Modelled: Change of Logistic Pattern (More Bundling Points)
- Modelled: Diversion to Rail/IWW
Scen. I: Rail Bus. As Usual
Scen. Ila: Rail Bus. As Usual
Scen. Ilb: Rail Efficient
Toll on Motorways only
Toll on All Roads
Toll on all Roads
Observed and Modelled Impacts on the Environment

- Indications: Diversion from Motorways to Secondary Road System
- Indications: Diversion from HGV $\geq 12t$ to HGV $< 12t$.
- Indications: Increased Use of Old Technology on the Secondary Road System